An Alternating Rank-<i>k</i> Nonnegative Least Squares Framework (ARkNLS) for Nonnegative Matrix Factorization

نویسندگان

چکیده

An Alternating Rank-k Nonnegative Least Squares Framework (ARkNLS) for Matrix Factorization

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

On Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices

Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...

متن کامل

A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a popular technique in a variety of fields due to its component-based representation with physical interpretablity. NMF finds a nonnegative hidden structures as oblique bases and coefficients. Recently, Orthogonal NMF (ONMF), imposing an orthogonal constraint into NMF, has been gathering a great deal of attention. ONMF is more appropriate for the cluste...

متن کامل

Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method

The non-negative matrix factorization (NMF) determines a lower rank approximation of a matrix where an interger "!$# is given and nonnegativity is imposed on all components of the factors % & (' and % )'* ( . The NMF has attracted much attention for over a decade and has been successfully applied to numerous data analysis problems. In applications where the components of the data are necessaril...

متن کامل

Approximate Nonnegative Matrix Factorization via Alternating Minimization

In this paper we consider the Nonnegative Matrix Factorization (NMF) problem: given an (elementwise) nonnegative matrix V ∈ R + find, for assigned k, nonnegative matrices W ∈ R + and H ∈ R k×n + such that V = WH . Exact, non trivial, nonnegative factorizations do not always exist, hence it is interesting to pose the approximate NMF problem. The criterion which is commonly employed is I-divergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2021

ISSN: ['1095-7162', '0895-4798']

DOI: https://doi.org/10.1137/20m1352405